The Phylogeny and Evolutionary Timescale of Muscoidea (Diptera: Brachycera: Calyptratae) Inferred from Mitochondrial Genomes
نویسندگان
چکیده
Muscoidea is a significant dipteran clade that includes house flies (Family Muscidae), latrine flies (F. Fannidae), dung flies (F. Scathophagidae) and root maggot flies (F. Anthomyiidae). It is comprised of approximately 7000 described species. The monophyly of the Muscoidea and the precise relationships of muscoids to the closest superfamily the Oestroidea (blow flies, flesh flies etc) are both unresolved. Until now mitochondrial (mt) genomes were available for only two of the four muscoid families precluding a thorough test of phylogenetic relationships using this data source. Here we present the first two mt genomes for the families Fanniidae (Euryomma sp.) (family Fanniidae) and Anthomyiidae (Delia platura (Meigen, 1826)). We also conducted phylogenetic analyses containing of these newly sequenced mt genomes plus 15 other species representative of dipteran diversity to address the internal relationship of Muscoidea and its systematic position. Both maximum-likelihood and Bayesian analyses suggested that Muscoidea was not a monophyletic group with the relationship: (Fanniidae + Muscidae) + ((Anthomyiidae + Scathophagidae) + (Calliphoridae + Sarcophagidae)), supported by the majority of analysed datasets. This also infers that Oestroidea was paraphyletic in the majority of analyses. Divergence time estimation suggested that the earliest split within the Calyptratae, separating (Tachinidae + Oestridae) from the remaining families, occurred in the Early Eocene. The main divergence within the paraphyletic muscoidea grade was between Fanniidae + Muscidae and the lineage ((Anthomyiidae + Scathophagidae) + (Calliphoridae + Sarcophagidae)) which occurred in the Late Eocene.
منابع مشابه
The Mitochondrial Genome of Elodia flavipalpis Aldrich (Diptera: Tachinidae) and the Evolutionary Timescale of Tachinid Flies
Tachinid flies are natural enemies of many lepidopteran and coleopteran pests of forests, crops, and fruit trees. In order to address the lack of genetic data in this economically important group, we sequenced the complete mitochondrial genome of the Palaearctic tachinid fly Elodia flavipalpis Aldrich, 1933. Usually found in Northern China and Japan, this species is one of the primary natural e...
متن کاملPhylogenetic inference of calyptrates, with the first mitogenomes for Gasterophilinae (Diptera: Oestridae) and Paramacronychiinae (Diptera: Sarcophagidae).
The complete mitogenome of the horse stomach bot fly Gasterophilus pecorum (Fabricius) and a near-complete mitogenome of Wohlfahrt's wound myiasis fly Wohlfahrtia magnifica (Schiner) were sequenced. The mitogenomes contain the typical 37 mitogenes found in metazoans, organized in the same order and orientation as in other cyclorrhaphan Diptera. Phylogenetic analyses of mitogenomes from 38 calyp...
متن کاملTime flies, a new molecular time-scale for brachyceran fly evolution without a clock.
The insect order Diptera, the true flies, contains one of the four largest Mesozoic insect radiations within its suborder Brachycera. Estimates of phylogenetic relationships and divergence dates among the major brachyceran lineages have been problematic or vague because of a lack of consistent evidence and the rarity of well-preserved fossils. Here, we combine new evidence from nucleotide seque...
متن کاملMitochondrial Genomes Provide Insights into the Phylogeny of Lauxanioidea (Diptera: Cyclorrhapha)
The superfamily Lauxanioidea is a significant dipteran clade including over 2500 known species in three families: Lauxaniidae, Celyphidae and Chamaemyiidae. We sequenced the first five (three complete and two partial) lauxanioid mitochondrial (mt) genomes, and used them to reconstruct the phylogeny of this group. The lauxanioid mt genomes are typical of the Diptera, containing all 37 genes usua...
متن کاملRapid and recent diversification patterns in Anseriformes birds: Inferred from molecular phylogeny and diversification analyses
The Anseriformes is a well-known and widely distributed bird order, with more than 150 species in the world. This paper aims to revise the classification, determine the phylogenetic relationships and diversification patterns in Anseriformes by exploring the Cyt b, ND2, COI genes and the complete mitochondrial genomes (mito-genomes). Molecular phylogeny and genetic distance analyses suggest that...
متن کامل